lunes, 25 de octubre de 2010

Glosario (parte 4).

¿Cuantos transistores tiene un chip?

Según la clasificación:
Atendiendo al nivel de integración - número de componentes - los circuitos integrados (chips) se clasifican en: SSI (Small Scale Integration) pequeño nivel: de 10 a 100 transistores.
MSI (Medium Scale Integration) medio: 101 a 1.000 transistores.
LSI (Large Scale Integration) grande: 1.001 a 10.000 transistores.
VLSI (Very Large Scale Integration) muy grande: 10.001 a 100.000 transistores.
ULSI (Ultra Large Scale Integration) ultra grande: 100.001 a 1.000.000 transistores.
GLSI (Giga Large Scale Integration) giga grande: más de un millón de transistores.
 
En cuanto a las funciones integradas, los circuitos se clasifican en dos grandes grupos: 
Circuitos integrados analógicos. Pueden constar desde simples transistores encapsulados juntos, sin unión entre ellos, hasta dispositivos completos como amplificadores, osciladores o incluso receptores de radio completos. 
Circuitos integrados digitales. Pueden ser desde básicas puertas lógicas (Y, O, NO) hasta los más complicados microprocesadores o microcontroladores.
Éstos son diseñados y fabricados para cumplir una función específica dentro de un sistema. En general, la fabricación de los CI es compleja ya que tienen una alta integración de componentes en un espacio muy reducido de forma que llegan a ser microscópicos. Sin embargo, permiten grandes simplificaciones con respecto los antiguos circuitos, además de un montaje más rápido.

¿Qué tipo de memoria son los pendrive?


Una memoria USB (Universal Serial Bus; en inglés USB flash drive) es un dispositivo de almacenamiento masivo que utiliza memoria flash para guardar la información que puede requerir. Se conecta mediante un puerto USB y la información que a este se le introduzca puede ser modificada millones de veces durante su vida útil. Estas memorias son resistentes a los rasguños (externos), al polvo, y algunos al agua —que han afectado a las formas previas de almacenamiento portátil—, como los disquetes, discos compactos y los DVD. En España son conocidas popularmente como pendrives, en otros países como Colombia, Honduras, México y Guatemala son conocidas como memorias, en Panamá como "USB's" (pronunciado tanto en inglés como español) y en Venezuela son mayormente llamadas pendrives.

miércoles, 20 de octubre de 2010

Glosarios (parte3)

Lenguaje ensamblador:


(Lenguaje de máquina del Intel 8088. El código de máquina se resalta en rojo, el equivalente en lenguaje Assembly en magenta, y las direcciones de memoria donde se encuentra el código, en azul).
El lenguaje Assembly (a veces mal llamado "Ensamblador" por su traducción literal al español) es un tipo de lenguaje de bajo nivel utilizado para escribir programas informáticos, y constituye la representación más directa del código máquina específico para cada arquitectura de computadoras legible por un programador.
Fue usado principalmente en los inicios del desarrollo de software, cuando aún no se contaba con los potentes lenguajes de alto nivel. Actualmente se utiliza con frecuencia en ambientes académicos y de investigación, especialmente cuando se requiere la manipulación directa de hardware, se pretenden altos rendimientos o un uso de recursos controlado y reducido.
Aunque a veces suele usarse el nombre "Ensamblador" en realidad este nombre corresponde al programa que realiza la interpretación del código en Assembly y genera el código máquina adecuado. Dado que Assembly es un nombre propio, no debería traducirse.
Muchos dispositivos programables (como los microcontroladores) aun cuentan con el lenguaje Assembly como la única manera de ser manipulados.


Memoria caché o RAM caché:

Un caché es un sistema especial de almacenamiento de alta velocidad. Puede ser tanto un área reservada de la memoria principal como un dispositivo de almacenamiento de alta velocidad independiente. Hay dos tipos de caché frecuentemente usados en las computadoras personales: memoria caché y caché de disco. Una memoria cache, llamada también a veces almacenamiento caché o RAM caché, es una parte de memoria RAM estática de alta velocidad (SRAM) más que la lenta y barata RAM dinámica (DRAM) usada como memoria principal. La memoria cache es efectiva dado que los programas acceden una y otra vez a los mismos datos o instrucciones. Guardando esta información en SRAM, la computadora evita acceder a la lenta DRAM.
Cuando se encuentra un dato en la caché, se dice que se ha producido un acierto, siendo un caché juzgado por su tasa de aciertos (hit rate). Los sistemas de memoria caché usan una tecnología conocida por caché inteligente en la cual el sistema puede reconocer cierto tipo de datos usados frecuentemente. Las estrategias para determinar qué información debe de ser puesta en el cache constituyen uno de los problemas más interesantes en la ciencia de las computadoras. Algunas memorias cache están construidas en la arquitectura de los microprocesadores. Por ejemplo, el procesador Pentium II tiene una caché L2 de 512 Kbytes.
La caché de disco trabaja sobre los mismos principios que la memoria caché, pero en lugar de usar SRAM de alta velocidad, usa la convencional memoria principal. Los datos más recientes del disco duro a los que se ha accedido (así como los sectores adyacentes) se almacenan en un buffer de memoria. Cuando el programa necesita acceder a datos del disco, lo primero que comprueba es la cache del disco para ver si los datos ya están ahí. La cache de disco puede mejorar drásticamente el rendimiento de las aplicaciones, dado que acceder a un byte de datos en RAM puede ser miles de veces más rápido que acceder a un byte del disco duro.

Memoria DRAM:

Memoria RAM.JPGDRAM (Dynamic Random Access Memory) es un tipo de memoria dinámica de acceso aleatorio que se usa principalmente en los módulos de memoria RAM y en otros dispositivos, como memoria principal del sistema. Se denomina dinámica, ya que para mantener almacenado un dato, se requiere revisar el mismo y recargarlo, cada cierto período, en un ciclo de refresco. Su principal ventaja es la posibilidad de construir memorias con una gran densidad de posiciones y que todavía funcionen a una velocidad alta: en la actualidad se fabrican integrados con millones de posiciones y velocidades de acceso medidos en millones de bit por segundo. Es una memoria volátil, es decir cuando no hay alimentación eléctrica, la memoria no guarda la información. Inventada a finales de los sesenta, es una de las memorias más usadas en la actualidad.                                                                                  


Memoria SRAM:

Static Random Access Memory (SRAM), o Memoria Estática de Acceso Aleatorio es un tipo de memoria basada en semiconductores que, a diferencia de la memoria DRAM, es capaz de mantener los datos (mientras esté alimentada) sin necesidad de circuito de refresco (no se descargan). Sin embargo, sí son memorias volátiles, es decir que pierden la información si se les interrumpe la alimentación eléctrica.

Memoria SDRAM:

Synchronous Dynamic Random Access Memory (SDRAM) es una memoria dinámica de acceso aleatorio DRAM que tiene una interfaz síncrona. Tradicionalmente, la memoria dinámica de acceso aleatorio DRAM tiene una interfaz asíncrona, lo que significa que el cambio de estado de la memoria tarda un cierto tiempo, dado por las características de la memoria, desde que cambian sus entradas. En cambio, en las SDRAM el cambio de estado tiene lugar en el momento señalado por una señal de reloj y, por lo tanto, está sincronizada con el bus de sistema del ordenador. El reloj también permite controlar una máquina de estados finitos interna que controla la función de "pipeline" Segmentación (informática)|segmentación de las instrucciones de entrada. Esto permite que el chip tenga un patrón de operación más complejo que la DRAM asíncrona, que no tiene una interfaz de sincronización.
El método de segmentación significa que el chip puede aceptar una nueva instrucción antes de que haya terminado de procesar la anterior. En una escritura de datos, el comando "escribir" puede ser seguido inmediatamente por otra instrucción, sin esperar a que los datos se escriban en la matriz de memoria. En una lectura, los datos solicitados aparecen después de un número fijo de pulsos de reloj tras la instrucción de lectura, durante los cuales se pueden enviar otras instrucciones adicionales. (Este retraso se llama latencia y es un parámetro importante a considerar cuando se compra una memoria SDRAM para un ordenador.)
Las SDRAM son ampliamente utilizadas en los ordenadores, desde la original SDRAM y las posteriores DDR SDRAM, DDR (o DDR1), DDR2 y DDR3. Actualmente se está diseñando la DDR4 y se prevé que estará disponible en 2012.

Memoria DDRAM:

DDR (Double Data Rate) significa doble tasa de transferencia de datos en español. Son módulos de memoria RAM compuestos por memorias síncronas (SDRAM), disponibles en encapsulado DIMM, que permite la transferencia de datos por dos canales distintos simultáneamente en un mismo ciclo de reloj. Los módulos DDR soportan una capacidad máxima de 1 nibble.
Fueron primero adoptadas en sistemas equipados con procesadores AMD Athlon. Intel con su Pentium 4 en un principio utilizó únicamente memorias RAMBUS, más costosas. Ante el avance en ventas y buen rendimiento de los sistemas AMD basados en DDR SDRAM, Intel se vio obligado a cambiar su estrategia y utilizar memoria DDR, lo que le permitió competir en precio. Son compatibles con los procesadores de Intel Pentium 4 que disponen de un Front Side Bus (FSB) de 64 bits de datos y frecuencias de reloj desde 200 a 400 MHz.
También se utiliza la nomenclatura PC1600 a PC4800, ya que pueden transferir un volumen de información de 8 bytes en cada ciclo de reloj a las frecuencias descritas.
Un ejemplo de calculo para PC-1600: 100 MHz x 2 Datos por Ciclo x 8 B = 1600 MiB/s
Muchas placas base permiten utilizar estas memorias en dos modos de trabajo distintos:
Single Memory Channel: Todos los módulos de memoria intercambian información con el bus a través de un sólo canal, para ello sólo es necesario introducir todos los módulos DIMM en el mismo banco de slots.
Dual Memory Channel: Se reparten los módulos de memoria entre los dos bancos de slots diferenciados en la placa base, y pueden intercambiar datos con el bus a través de dos canales simultáneos, uno para cada banco.


miércoles, 6 de octubre de 2010

Glosario (parte2)

Placa Base:
La placa base, placa madre, tarjeta madre o board (en inglés motherboard, mainboard) es una tarjeta de circuito impreso a la que se conectan las demás partes de lacomputadora. Tiene instalados una serie de circuitos integrados, entre los que se encuentra el chipset, que sirve como centro de conexión entre el procesador, la memoria RAM, los buses de expansión y otros dispositivos.
Va instalada dentro de una caja que por lo general está hecha de chapa y tiene un panel para conectar dispositivos externos y muchos conectores internos y zócalos para instalar componentes dentro de la caja.
La placa base, además, incluye un software llamado BIOS, que le permite realizar las funcionalidades básicas, como pruebas de los dispositivos, vídeo y manejo del teclado, reconocimiento de dispositivos y carga del sistema operativo.




BIOS:
El BIOS (Basic Input-Output System) es un sistema básico de entrada/salida que normalmente pasa inadvertido para el usuario final de computadoras. Se encarga de encontrar el sistema operativo y cargarlo en memoria RAM. Posee un componente de hardware y otro de software, este último brinda una interfaz generalmente de texto que permite configurar varias opciones del hardware instalado en el PC, como por ejemplo el reloj, o desde qué dispositivos de almacenamiento iniciará el sistema operativo (Windows, GNU/Linux, Mac OS X, etc.).
IDE:
El puerto IDE (Integrated device Electronics) o ATA (Advanced Technology Attachment) controla los dispositivos de almacenamiento masivo de datos, como los discos duros y ATAPI (Advanced Technology Attachment Packet Interface) y además añade dispositivos como las unidades CD-ROM.


SATA:
Serial ATA o SATA (acrónimo de Serial Advanced Technology Attachment) es una interfaz de transferencia de datos entre la placa base y algunos dispositivos de almacenamiento, como puede ser el disco duro, Lectores y regrabadores de CD/DVD/BR,Unidades de Estado Sólido u otros dispositivos de altas prestaciones que están siendo todavía desarrollados. Serial ATA sustituye a la tradicional Parallel ATA o P-ATA. SATA proporciona mayores velocidades, mejor aprovechamiento cuando hay varias unidades, mayor longitud del cable de transmisión de datos y capacidad para conectar unidades en caliente, es decir, insertar el dispositivo sin tener que apagar el ordenador o que sufra un cortocircuito como con los viejos Molex


USB:
El Universal Serial Bus (bus universal en serie) o Conductor Universal en Serie (CUS), abreviado comúnmente USB, es un puerto que sirve para conectar periféricos a un ordenador. Fue creado en 1996 por siete empresas (que actualmente forman el consejo directivo): IBM, Intel,Northern Telecom, Compaq, Microsoft, Digital Equipment Corporation y NEC. En el caso de los discos duros, es poco probable que el USB reemplace completamente a los buses (el ATA (IDE) y el SCSI), pues el USB tiene un rendimiento más lento que esos otros estándares. Sin embargo, el USB tiene una importante ventaja en su habilidad de poder instalar y desinstalar dispositivos sin tener que abrir el sistema, lo cual es útil para dispositivos de almacenamiento externo. Hoy en día, una gran parte de los fabricantes ofrece dispositivos USB portátiles que ofrecen un rendimiento casi indistinguible en comparación con los ATA (IDE). Por el contrario, el nuevo estándar Serial ATA permite tasas de transferencia de hasta aproximadamente 150/300 MB por segundo, y existe también la posibilidad de extracción en caliente e incluso una especificación para discos externos llamada eSATA.
Ranura PCI:

Un Peripheral Component Interconnect (PCI, "Interconexión de Componentes Periféricos") consiste en un bus de ordenador estándar para conectar dispositivos periféricos directamente a su placa base. Estos dispositivos pueden ser circuitos integrados ajustados en ésta (los llamados "dispositivos planares" en la especificación PCI) o tarjetas de expansión que se ajustan en conectores. Es común en PC, donde ha desplazado al ISA como bus estándar, pero también se emplea en otro tipo de ordenadores.
A diferencia de los buses ISA, el bus PCI permite configuración dinámica de un dispositivo periférico. En el tiempo de arranque del sistema, las tarjetas PCI y el BIOS interactúan y negocian los recursos solicitados por la tarjeta PCI. Esto permite asignación de IRQs y direcciones del puerto por medio de un proceso dinámico diferente del bus ISA, donde las IRQs tienen que ser configuradas manualmente usando jumpersexternos. Las últimas revisiones de ISA y el bus MCA de IBM ya incorporaron tecnologías que automatizaban todo el proceso de configuración de las tarjetas, pero el bus PCI demostró una mayor eficacia en tecnología "plug and play". Aparte de esto, el bus PCI proporciona una descripción detallada de todos los dispositivos PCI conectados a través del espacio de configuración PCI.
AGP
Accelerated Graphics Port (AGP, Puerto de Gráficos Acelerado, en ocasiones llamado Advanced Graphics Port, Puerto de Gráficos Avanzado) es un puerto (puesto que sólo se puede conectar un dispositivo, mientras que en el bus se pueden conectar varios) desarrollado porIntel en 1996 como solución a los cuellos de botella que se producían en las tarjetas gráficas que usaban el bus PCI. El diseño parte de las especificaciones del PCI 2.1.

El puerto AGP es de 32 bit como PCI pero cuenta con notables diferencias como 8 canales más adicionales para acceso a la memoria RAM. Además puede acceder directamente a esta a través del puente norte pudiendo emular así memoria de vídeo en la RAM. La velocidad del buses de 66 MHz.
El bus AGP cuenta con diferentes modos de funcionamiento:

-AGP 1X: velocidad 66 MHz con una tasa de transferencia de 266 MB/s y funcionando a un voltaje de 3,3V.
-AGP 2X: velocidad 133 MHz con una tasa de transferencia de 532 MB/s y funcionando a un voltaje de 3,3V.
-AGP 4X: velocidad 266 MHz con una tasa de transferencia de 1 GB/s y funcionando a un voltaje de 3,3 o 1,5V para adaptarse a los diseños de las tarjetas gráficas.
-AGP 8X: velocidad 533 MHz con una tasa de transferencia de 2 TB/s y funcionando a un voltaje de 0,7V o 1,5V.


Procesadores:
El microprocesador o simplemente procesador, es el circuito integrado más importante, de tal modo, que se le considera el cerebro de una computadora. Está constituido por millones de transistores integrados. Puede definirse como chip, un tipo de componente electrónico en cuyo interior existen miles o en ocasiones millones, según su complejidad, de elementos llamados transistores cuyas interacciones permiten realizar las labores o funciones que tenga encomendado el chip.
Especificaciones de algunos procesadores:

2008: INTEL CORE NEHALEM

Intel Core i7 es una familia de procesadores de cuatro núcleos de la arquitectura Intel x86-64. Los Core i7 son los primeros procesadores que usan la microarquitectura Nehalem de Intel y es el sucesor de la familia Intel Core 2. FSB es reemplazado por la interfaz QuickPath en i7 e i5 (socket 1366), y sustituido a su vez en i7, i5 e i3 (socket 1156) por el DMI eliminado el northBrige e implementando puertos PCI Express directamente. Memoria de tres canales (ancho de datos de 192 bits): cada canal puede soportar una o dos memorias DIMM DDR3. Las placa base compatibles con Core i7 tienen cuatro (3+1) o seis ranuras DIMM en lugar de dos o cuatro, y las DIMMs deben ser instaladas en grupos de tres, no dos. El Hyperthreading fue reimplementado creando nucleos lógicos. Está fabricado a arquitecturas de 45 nm y 32 nm y posee 731 millones de transistores su versión más potente. Se volvió a usar frecuencias altas, aunque a contrapartida los consumos se dispararon
 2008: AMD PHENOM II Y ATHLON II   

Phenom II es el nombre dado por AMD a una familia de microprocesadores o CPUs multinúcleo (multicore) fabricados en 45 nm, la cual sucede al Phenom original y dieron soporte a DDR3. Una de las ventajas del paso de los 65 nm a los 45 nm, es que permitió aumentar la cantidad de cache L3. De hecho, ésta se incrementó de una manera generosa, pasando de los 2 MB del Phenom original a 6 MB.